Clinical Application of Diffusion-weighted Magnetic Resonance Imaging to Intracranial Disorders

Abstract
Diffusion-weighted magnetic resonance imaging was performed to determine the changes in water diffusion and to investigate the detectability of diffusion anisotropy in patients with intracranial disorders. Diffusion maps of the apparent diffusion coefficient (ADC) were created of 19 patients with cerebral infarction, five with intracerebral hematoma, four with glioma, four with meningioma, four with hydrocephalus, and five with subdural hematoma. ADC was increased in chronic cerebral infarction and glioma, and decreased in acute cerebral infarction, meningioma, and the marginal area of glioma compared with the ADC of the normal gray matter. There was a significant difference in ADC between the marginal and internal areas of glioma. Increased ADC may be due to increased vasogenic edema in infarction and a lack of significant restriction of diffusion within glioma. Decreased ADC can be attributed to restricted diffusion caused by cytotoxic edema in infarction and the underlying histological pattern of densely packed tumor cells in glioma. Diffusion anisotropy of the internal capsule was less detectable in pathological than normal hemispheres. Diffusion anisotropy was less detectable in patients with hydrocephalus and subdural hematoma. Intracranial lesions were thought to have influenced the compression of the brain structures and cells, resulting in decreased diffusion. The measurement of ADC by diffusion-weighted magnetic resonance imaging has the potential for greater understanding of the biophysical changes in various intracranial disorders, including correct diagnosis of cerebral infraction, and histological diagnosis of brain tumor.

This publication has 0 references indexed in Scilit: