Immunoprophylaxis of RSV Infection: Advancing from RSV-IGIV to Palivizumab and Motavizumab
- 1 January 2008
- book chapter
- Published by Springer Nature
- Vol. 317, 103-123
- https://doi.org/10.1007/978-3-540-72146-8_4
Abstract
Antibodies mediate humoral immune responses and play key roles in the defense of viral infection by the recognition, neutralization, and elimination of viruses from the circulation. For the prevention of respiratory syncytial virus (RSV) infection, the natural immune response to RSV from pooled human plasma has been harvested and successfully developed as a prophylactic polyclonal RSV hyperimmune globulin, RespiGam (RSV-IGIV; MedImmune, Gaithersburg, MD). The success of RSV-IGIV validated the immunoprophylaxis approach for RSV prevention and led to the development of Synagis (palivizumab; MedImmune, Gaithersburg, MD), a humanized monoclonal antibody (mAb) that binds to the RSV F protein. Palivizumab is a potent anti-RSV mAb that is about 50-fold more potent than RSV-IGIV, and since obtaining regulatory approval in 1998 it has been used extensively to help prevent severe RSV disease in high-risk infants and children. However, a very small number of patients receiving the drug do not appear to be adequately protected. To further improve protection against RSV, we have applied a directed evolution approach to enhance the binding of palivizumab to F protein by manipulation of both the on and off rates. These efforts have yielded a more potent second-generation mAb, motavizumab, which is currently under study in phase III clinical trials. Most recently, a third generation mAb, Numax-YTE, has been generated with the intent to extend the serum half-life of the mAb in humans. If successfully developed, this drug may offer the opportunity for less frequent dosing, obviating the need for the monthly treatments that are required with palivizumab. The development of these anti-RSV approaches exemplifies the accelerated pace of drug development made possible with cutting-edge antibody engineering technologies.Keywords
This publication has 78 references indexed in Scilit:
- In Vitro and In Vivo Fitness of Respiratory Syncytial Virus Monoclonal Antibody Escape MutantsJournal of Virology, 2006
- Ultra-potent Antibodies Against Respiratory Syncytial Virus: Effects of Binding Kinetics and Binding Valence on Viral NeutralizationJournal of Molecular Biology, 2005
- Electron Microscopy of the Human Respiratory Syncytial Virus Fusion Protein and Complexes That It Forms with Monoclonal AntibodiesVirology, 2000
- Comparability Testing of a Humanized Monoclonal Antibody (Synagis®) to Support Cell Line Stability, Process Validation, and Scale-Up for ManufacturingBiologicals, 1999
- Respiratory syncytial virus immune globulin for prophylaxis against respiratory syncytial virus disease in infants and children with congenital heart diseaseThe Journal of Pediatrics, 1998
- Nucleotide sequence of the fusion and phosphoprotein genes of human respiratory syncytial (RS) virus Long strain: evidence of subtype genetic heterogeneityVirus Research, 1988
- Relation of Serum Antibody to Glycoproteins of Respiratory Syncytial Virus with Immunity to Infection in ChildrenViral Immunology, 1987
- Immunoprophylaxis and immunotherapy of respiratory syncytial virus infection in the cotton ratVirus Research, 1985
- Respiratory-Syncytial-Virus Infections, Reinfections and ImmunityNew England Journal of Medicine, 1979
- Evaluation of a live, attenuated respiratory syncytial virus vaccine in infantsThe Journal of Pediatrics, 1976