Abstract
Treatment of PC12 cells with nerve growth factor induces their differentiation into sympathetic neuron-like cells and the concomitant expression of the neural cell adhesion molecule L1, a member of the Ig superfamily. To investigate the mechanism of L1-stimulated neurite outgrowth in PC12 cells, substrate-immobilized fusion proteins containing different extracellular domains of L1 were assayed for their neuritogenic activity. Surprisingly, domain Ig2 of L1, which was previously found to contain both homophilic binding and neuritogenic activities, failed to promote neurite outgrowth. In contrast, L1-Ig6 stimulated neurite outgrowth from PC12 cells. Despite this, homotypic binding of PC12 cells was significantly inhibited by antibodies against L1-Ig2, indicating that L1–L1 binding contributed to the intercellular adhesiveness of PC12 cells, but L1-stimulated neurite outgrowth depends on heterophilic interactions. Thus, PC12 cells provide a valuable model for the study of these two distinct functions of L1. Mutagenesis of L1-Ig6 highlighted the importance of the Arg-Gly-Asp motif in this domain for neuritogenesis. Inhibition studies using cyclic Arg-Gly-Asp-containing peptide and anti-integrin antibodies suggested the involvement of αvβ3 integrin. Furthermore, neurite outgrowth stimulated by L1-Ig6 was inhibited by lavendustin A and the MEK inhibitor PD98059, suggesting a signaling pathway that involves tyrosine kinase activation and the mitogen-activated protein kinase cascade.