New type of gap soliton in a coupled Korteweg–de Vries wave system
- 14 February 1994
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review Letters
- Vol. 72 (7) , 949-953
- https://doi.org/10.1103/physrevlett.72.949
Abstract
We show that, in a narrow gap in the spectrum of two linearly coupled Korteweg–de Vries equations with opposite signs of the dispersion coefficient, a two-parameter family of solitons of a novel type may exist. These are envelope solitons with decaying oscillating tails, which are radically different from the gap solitons previously known in nonlinear optics. In particular, they may become singular at some value of the velocity, and degenerate into algebraic solitons in another special case. It is demonstrated that gap solitons of the same type may also exist in a nonlinear optical system consisting of focusing and defocusing tunnel-coupled planar lightguides.Keywords
This publication has 14 references indexed in Scilit:
- Self-induced gap solitonsPhysical Review Letters, 1993
- Launching of gap solitons in nonuniform gratingsOptics Letters, 1993
- Gap solitons in diatomic latticesPhysical Review A, 1992
- Patterns produced by a short-wave instability in the presence of a zero modePhysical Review A, 1992
- Modulational instability in nonlinear periodic structures: Implications for ‘‘gap solitons’’Applied Physics Letters, 1991
- Self-induced transparency solitons in nonlinear refractive periodic mediaPhysics Letters A, 1989
- Self-localized light: launching of low-velocity solitons in corrugated nonlinear waveguidesOptics Letters, 1989
- Slow Bragg solitons in nonlinear periodic structuresPhysical Review Letters, 1989
- Gap solitons and the nonlinear optical response of superlatticesPhysical Review Letters, 1987
- Weak and Strong Interactions between Internal Solitary WavesStudies in Applied Mathematics, 1984