Influence of Mean Stress Intensity on Fatigue Crack Growth in an Aluminium Alloy

Abstract
The effects of the mean stress-intensity factor, Km, and the range of the stress intensity, Δ K, on crack propagation phenomena in the Al-alloy RR 58 have been studied using contoured double-cantilever beam specimens providing a constant stress-intensity factor for all crack lengths. Based on the experimental data available, a relationship of the following form, between the cyclic crack growth rate, d a/d N, and the tensile loading levels, has been proposed: where Δ K = ( Kmax - Kmin); Kmax, Kmin and Km are the maximum, minimum and mean values of the stress-intensity factor; Δ Kth is the threshold value of Δ K for crack propagation; K1C is the critical fracture toughness in plane strain conditions; A and α arc constants. In tests at room temperature (21 °C) in laboratory air and at a loading frequency of 0.15 Hz, it was found that Δ Kth decreased with increasing values of K m, α was equal to 1.36 and A equalled 3.16 times 10-5(in/cycle).