Abstract
Tremor of the extended third digit and bipolar surface and needle electromyograms of the extensor digitorum were recorded from six healthy volunteers for the purpose of elucidating the motor-unit activity responsible for the 8- to 12-Hz component of physiological finger tremor. Tremor was measured with a force transducer during steady voluntary contractions of approximately 200-250 g. The surface EMGs were full-wave rectified and low-pass filtered (-3 dB at 21 Hz), producing the envelope of the surface EMG (the demodulated EMG). Spectral analyses of simultaneous tremor and demodulated EMG records were performed. In four of six subjects, a pronounced 8- to 12-Hz amplitude modulation in the surface EMG was present, and coherency analysis demonstrated that this modulation was strongly correlated with the well-known 8- to 12-Hz tremor. In two subjects this amplitude modulation and tremor were barely detectable, despite the sensitive recording and analysis techniques used in this study. Spectral analysis was performed on 43 motor-unit spike trains. Twenty-two spike trains, having mean firing frequencies in the range of 10-22 spikes/s, produced statistically significant spectral peaks at 8-12 Hz, in addition to the expected spectral peaks at the mean firing frequencies. Of the 22 8- to 12-Hz-producing motor units, 12 had mean firing frequencies in the range of 17-22 spikes/s and exhibited the greatest 8- to 12-Hz activities of all motor units recorded. These motor units displayed transient sequences of double discharges in which interspike intervals (ISIS) of approximately 8-30 ms alternated with ISIS of 60-90 ms, thus producing an 8- to 12-Hz spectral peak. Adjacent ISIS of these motor units were correlated in the range of -0.5 to -0.9. Coherency analyses demonstrated that the 8- to 12-Hz activities of these motor units were correlated with the 8- to 12-Hz finger tremor and surface EMG modulation. The remaining 10 8- to 12-Hz-producing motor units had mean firing frequencies in the range of 10-17 spike/s. Although these motor units did not display the intense double-discharge firing pattern of the more rapidly firing motor units, a tendency toward action potential grouping was present and resulted in 8- to 12-Hz spectral activities which were correlated with the tremor and surface EMG modulation. .. ..

This publication has 0 references indexed in Scilit: