Abstract
Wright (1921) computed various correlations of relatives by a rather cumbersome procedure called the “method of path coefficients”. Wright's method is basically a disguised form of the use of Bayes' rule and the law of total probabilities. Malecot (1948) reorganized Wright's calculations by introducing the fundamental concept of identity by descent and exploiting its properties. The method of identity by descent has been perfected and developed by Malécot and his students, especially Gillois, Jauquard and Bouffette. Kempthorne (1957) has applied the concept of identity by descent to the study of quantitative inheritance. Kimura (1963) elegantly employed the ideas of identity by descent in determining rates of approach to homozygosity in certain mating situations with finite population size. Later in this chapter we will extend and refine the results of Kimura (1963) to give a more complete study of rates of approach to homozygosity. Ellison (1966) established several important limit theorems corresponding to polyploid, multi-locus random mating infinite populations by judicious enlargement of the concepts of identity by descent. Kesten (unpublished)) has recently refined the technique of Ellison.