Systematic feature evaluation for gene name recognition
Open Access
- 24 May 2005
- journal article
- research article
- Published by Springer Nature in BMC Bioinformatics
- Vol. 6 (S1) , S9
- https://doi.org/10.1186/1471-2105-6-s1-s9
Abstract
In task 1A of the BioCreAtIvE evaluation, systems had to be devised that recognize words and phrases forming gene or protein names in natural language sentences. We approach this problem by building a word classification system based on a sliding window approach with a Support Vector Machine, combined with a pattern-based post-processing for the recognition of phrases. The performance of such a system crucially depends on the type of features chosen for consideration by the classification method, such as pre- or postfixes, character n-grams, patterns of capitalization, or classification of preceding or following words. We present a systematic approach to evaluate the performance of different feature sets based on recursive feature elimination, RFE. Based on a systematic reduction of the number of features used by the system, we can quantify the impact of different feature sets on the results of the word classification problem. This helps us to identify descriptive features, to learn about the structure of the problem, and to design systems that are faster and easier to understand. We observe that the SVM is robust to redundant features. RFE improves the performance by 0.7%, compared to using the complete set of attributes. Moreover, a performance that is only 2.3% below this maximum can be obtained using fewer than 5% of the features.Keywords
This publication has 10 references indexed in Scilit:
- Identifying gene and protein mentions in text using conditional random fieldsBMC Bioinformatics, 2005
- BioCreAtIvE Task 1A: gene mention finding evaluationBMC Bioinformatics, 2005
- Recognizing names in biomedical texts: a machine learning approachBioinformatics, 2004
- GAPSCORE: finding gene and protein names one word at a timeBioinformatics, 2004
- Mining the Biomedical Literature in the Genomic Era: An OverviewJournal of Computational Biology, 2003
- A probabilistic model for identifying protein names and their name boundariesProceedings. IEEE Computer Society Bioinformatics Conference, 2003
- Genew: the Human Gene Nomenclature DatabaseNucleic Acids Research, 2002
- Gene Selection for Cancer Classification using Support Vector MachinesMachine Learning, 2002
- An Introduction to Support Vector Machines and Other Kernel-based Learning MethodsPublished by Cambridge University Press (CUP) ,2000
- The Nature of Statistical Learning TheoryPublished by Springer Nature ,1995