The Maxwell field, its adjoint field and the ‘conjugate’field in anisotropic absorbing media
- 1 April 1975
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Plasma Physics
- Vol. 13 (2) , 299-316
- https://doi.org/10.1017/s0022377800026064
Abstract
In absorbing media, where Maxwell's equations are not seif-adjoint, the adjoint field is introduced via the differential operator adjoint to the Maxwell operator. The concomitant vector can be made equal to the time averaged Poynting vector at a boundary with a non-absorbing medium. In general, the adjoint field represents an electromagnetic field in a medium other than the absorbing medium under consideration. To draw conclusions about the latter, a [conjugate field] in this medium is defined, using a conjugating transformation of the Maxwell operator and field. Relations between the conjugate and adjoint fields are established, allowing one to gather physical information about the first absorbing medium from the adjoint field.Keywords
This publication has 13 references indexed in Scilit:
- Constitutive Relations and Subsidiary Conditions in the Eikonal ApproximationCanadian Journal of Physics, 1973
- Biorthogonality relations for bianisotropic mediaJournal of the Optical Society of America, 1973
- Optics in Stratified and Anisotropic Media: 4×4-Matrix FormulationJournal of the Optical Society of America, 1972
- A numerical study of the excitation, internal reflection and limiting polarization of whistler waves in the lower ionosphereJournal of Atmospheric and Terrestrial Physics, 1966
- Asymptotic theory of wave-propagationArchive for Rational Mechanics and Analysis, 1965
- RECIPROCITY AND NONRECIPROCITY WITH MAGNETOIONIC RAYSCanadian Journal of Physics, 1964
- A reciprocity theorem on the propagation of radio waves via the ionosphereMathematical Proceedings of the Cambridge Philosophical Society, 1954
- Coupled forms of the differential equations governing radio propagation in the ionosphereMathematical Proceedings of the Cambridge Philosophical Society, 1954
- On the Group Velocity, Wave Path and their Relations to the Poynting Vector of the Electromagnetic Field in an Absorbing MediumJournal of the Physics Society Japan, 1952
- Oblique propagation of electromagnetic waves in a slowly-varying non-isotropic mediumProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1936