EQUATION OF STATE, MASS, RADIUS, MOMENT OF INERTIA, AND SURFACE GRAVITATIONAL REDSHIFT FOR NEUTRON STARS

Abstract
We have calculated total masses and radii of neutron stars from the Tolman-Oppenheimer-Volkoff (TOV) equations (for matter in equilibrium in gravitational fields) and different equations of state for neutron-star matter. The calculations are done for different input central densities. We have also obtained pressure and density as functions of distance from the centre of the star, and moments of inertia and surface gravitational redshifts as functions of the total mass of the star. The maximum mass M max is for all equations of state in our calculations given by 1.65M max ⊙ (where M is the solar mass), which agrees very well with “experimental” results. Corresponding radii R are given by 8.8 km <R<12.7 km , and a smaller central density will, in general, give a smaller mass and a larger radius.

This publication has 0 references indexed in Scilit: