Finite Deflections of a Nonlinearly Elastic Bar

Abstract
The problem of finite deflections of a nonlinearly elastic bar is investigated as an extension of the classical theory of the elastica to include material nonlinearities. A moment-curvature relation in the form of a hyperbolic tangent law is introduced to simulate that of a class of elastoplastic materials. The problem of finite deflections of a clamped-end bar subjected to an axial force is given special attention, and numerical solutions to the resulting system of nonlinear differential equations are obtained. Tables of results for various values of the parameters defining the material are provided and solutions are compared with those of the classical theory of the elastica.

This publication has 0 references indexed in Scilit: