Differential scanning calorimetry analysis of morphological changes in segmented elastomers

Abstract
Investigations of morphological changes which are induced in segmented elastomers by annealing and quenching are reported. Four different polymers were studied each based on the same soft segment—1000 or 2000 molecular weight poly(tetramethylene oxide). The hard segments were 4,4′‐diphenylmethane diisocyanate (MDI) chain extended with 1,4‐butane diol (ET series), piperazine coupled with 1,4‐butane diol bischloroformate (BN‐1,4), or dimethyl terephthalate condensed with 1,4‐butane diol (H‐50). Following annealing at various temperatures (120, 150, 170, or 190°C), the polymers were quenched to ambient conditions, and their properties measured by differential scanning calorimetry (DSC) as a function of time following the quench. DSC measurements taken immediately after the quench show that the soft segment Tg is higher than that of the control, suggesting that the applied thermal history promoted increased mixing of hard and soft segments. As time passes after quenching, the Tg values decrease and approach an equilibrium value. This effect is much smaller for those samples having crystalline hard segments. Endotherms attributed to the disruption of long range ordering in the hard segment domains resulted from the annealing process. These endotherms appeared at higher temperatures for higher annealing temperatures. The positions of crystalline melting endotherms were independent of the annealing/quenching conditions investigated.