Activation of Reg gene, a gene for insulin-producing beta -cell regeneration: Poly(ADP-ribose) polymerase binds Reg promoter and regulates the transcription by autopoly(ADP-ribosyl)ation

Abstract
The regeneration of pancreatic islet β cells is important for the prevention and cure of diabetes mellitus. We have demonstrated that the administration of poly(ADP-ribose) synthetase/polymerase (PARP) inhibitors such as nicotinamide to 90% depancreatized rats induces islet regeneration. From the regenerating islet-derived cDNA library, we have isolated Reg (regenerating gene) and demonstrated that Reg protein induces β-cell replication via the Reg receptor and ameliorates experimental diabetes. However, the mechanism by which Reg gene is activated in β cells has been elusive. In this study, we found that the combined addition of IL-6 and dexamethasone induced the expression of Reg gene in β cells and that PARP inhibitors enhanced the expression. Reporter gene assays revealed that the −81 ≈ −70 region (TGCCCCTCCCAT) of the Reg gene promoter is a cis-element for the expression of Reg gene. Gel mobility shift assays showed that the active transcriptional DNA/protein complex was formed by the stimulation with IL-6 and dexamethasone. Surprisingly, PARP bound to the cis-element and was involved in the active transcriptional DNA/protein complex. The DNA/protein complex formation was inhibited depending on the autopoly(ADP-ribosyl)ation of PARP in the complex. Thus, PARP inhibitors enhance the DNA/protein complex formation for Reg gene transcription and stabilize the complex by inhibiting the autopoly(ADP-ribosyl)ation of PARP.