Cyanamide mediated syntheses under plausible primitive earth conditions

Abstract
A mixture of ammonium palmitate,14C-sn-glycero-1(3)-phosphate, cyanimide and imidazole when heated for several hours formed significant quantities of phospholipids. These reaction products were shown by chromatographic, chemical and enzymatic procedures to be monopalmitoylglycerophosphate (MPGP), dipalmitoylglycerophosphate (DPGP) and monopalmitoyl cyclic glycerophosphate (cMPGP). A portion of the MPGP and DPGP possessed the same steric configuration as naturally occurring lysophosphatidic acid and phosphatidic acid. The yield of total phospholipid was maximal at temperatures between 60° and 90° after 8 h. When ratios of reactants were varied, up to 45% of radioactive glycerophosphate was converted into phospholipids. The average proportions of individual phosphatidic acids were: 60% MPGP, 27% DPGP and 13% cMPGP. Evidence was obtained for a synergistic relationship between cyanamide and imidazole in promoting the formation of phosphatidic acids. These results suggest that phosphatidic acids, which are essential precursors for the biochemical synthesis of more complex membrane phospholipids, could have been produced on the primitive Earth.