Cell Surface Orifices of Caveolae and Localization of Caveolin to the Necks of Caveolae in Adipocytes
Open Access
- 1 October 2003
- journal article
- Published by American Society for Cell Biology (ASCB) in Molecular Biology of the Cell
- Vol. 14 (10) , 3967-3976
- https://doi.org/10.1091/mbc.e03-01-0050
Abstract
Caveolae are noncoated invaginations of the plasma membrane that form in the presence of the protein caveolin. Caveolae are found in most cells, but are especially abundant in adipocytes. By high-resolution electron microscopy of plasma membrane sheets the detailed structure of individual caveolae of primary rat adipocytes was examined. Caveolin-1 and -2 binding was restricted to the membrane proximal region, such as the ducts or necks attaching the caveolar bulb to the membrane. This was confirmed by transfection with myc-tagged caveolin-1 and -2. Essentially the same results were obtained with human fibroblasts. Hence caveolin does not form the caveolar bulb in these cells, but rather the neck and may thus act to retain the caveolar constituents, indicating how caveolin participates in the formation of caveolae. Caveolae, randomly distributed over the plasma membrane, were very heterogeneous, varying in size between 25 and 150 nm. There was about one million caveolae in an adipocyte, which increased the surface area of the plasma membrane by 50%. Half of the caveolae, those larger than 50 nm, had access to the outside of the cell via ducts and 20-nm orifices at the cell surface. The rest of the caveolae, those smaller than 50 nm, were not open to the cell exterior. Cholesterol depletion destroyed both caveolae and the cell surface orifices.Keywords
This publication has 61 references indexed in Scilit:
- Characterization of a Distinct Plasma Membrane Macrodomain in Differentiated AdipocytesJournal of Biological Chemistry, 2002
- Mechanism of caveolin filament assemblyProceedings of the National Academy of Sciences, 2002
- Caveolae: A Once-Elusive Structure Gets Some RespectPublished by American Association for the Advancement of Science (AAAS) ,2001
- Loss of Caveolae, Vascular Dysfunction, and Pulmonary Defects in Caveolin-1 Gene-Disrupted MiceScience, 2001
- Cholesterol Depletion Disrupts Caveolae and Insulin Receptor Signaling for Metabolic Control via Insulin Receptor Substrate-1, but Not for Mitogen-activated Protein Kinase ControlJournal of Biological Chemistry, 2001
- Dynamin at the Neck of Caveolae Mediates Their Budding to Form Transport Vesicles by GTP-driven Fission from the Plasma Membrane of EndotheliumThe Journal of cell biology, 1998
- De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin.Proceedings of the National Academy of Sciences, 1995
- Caveolin, a protein component of caveolae membrane coatsPublished by Elsevier ,1992
- Potocytosis: Sequestration and Transport of Small Molecules by CaveolaeScience, 1992
- THE FINE STRUCTURE OF THE GALL BLADDER EPITHELIUM OF THE MOUSEThe Journal of cell biology, 1955