Genetic control of UDP-glucose: anthocyanin 5-O-glucosyltransferase from flowers of Matthiola incana R.Br.

Abstract
In flower extracts of defined genotypes of Matthiola incana, an enzyme was demonstrated which catalyzes the transfer of the glucosyl moiety of uridine 5′-diphosphoglucose (UDPGlc) to the 5-hydroxyl group of pelargonidin and cyanidin 3-glycosides and acylated derivatives. The best substrate for 5-glucosylation is the 3-xylosylglucoside acylated with p-coumarate, followed by the 3-xylosylglucoside and by the acylated (p-coumarate) 3-glucoside. The 3-glucoside itself is a very poor substrate. Besides UDPGlc, thymine 5′-diphosphoglucose is a suitable glucosyl-donor, but with a reduced reaction rate (42%). The anthocyanin 5-O-glucosyltransferase exhibits a pH optimum at 7.5 and is generally inhibited by divalent ions and by ethylenediaminetetraacetic acid and p-chloromercuribenzoate. Investigations on different genotypes showed that the 5-O-glucosyltransferase activity is clearly controlled by the gene l. In confirmation of earlier chemogenetic work, enzyme activity is only present in lines with the wild-type allele l+. The anthocyanin 5-O-glucosyltransferase activity is strictly correlated with the formation of 5-glucosylated anthocyanins during bud development.