Genetic Adaptation to Untranslated Region-Mediated Enterovirus Growth Deficits by Mutations in the Nonstructural Proteins 3AB and 3CD

Abstract
Both untranslated regions (UTRs) of plus-strand RNA virus genomes jointly control translation and replication of viral genomes. In the case of the Enterovirus genus of the Picornaviridae family, the 5′UTR consists of a cloverleaf-like terminus preceding the internal ribosomal entry site (IRES) and the 3′ terminus is composed of a structured 3′UTR and poly(A). The IRES and poly(A) have been implicated in translation control, and all UTR structures, in addition to cis -acting genetic elements mapping to the open reading frame, have been assigned roles in RNA replication. Viral UTRs are recognized by viral and host cell RNA-binding proteins that may codetermine genome stability, translation, plus- and minus-strand RNA replication, and scaffolding of viral replication complexes within host cell substructures. In this report, we describe experiments with coxsackie B viruses with a cell type-specific propagation deficit in Sk-N-Mc neuroblastoma cells conferred by the combination of a heterologous IRES and altered 3′UTR. Serial passage of these constructs in Sk-N-Mc cells yielded genetic adaptation by mutations within the viral nonstructural proteins 3A and 3C. Our data implicate 3A and/or 3C or their precursors 3AB and/or 3CD in a functional complex with the IRES and 3′UTR that drives viral propagation. Adaptation to neuroblastoma cells suggests an involvement of cell type-specific host factors or the host cell cytoplasmic milieu in this phenomenon.