Optimum Alignment of an Inertial Autonavigator
- 1 November 1967
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Aerospace and Electronic Systems
- Vol. AES-3 (6) , 880-888
- https://doi.org/10.1109/taes.1967.5408659
Abstract
The performance of an inertial autonavigator can only be as good as the accuracy to which the system is initially aligned. Optical methods of alignment can be performed with high precision; however, this technique requires external equipment and is subject to some physical constraints, such as land-based operation. The general problem discussed here is the use of an automatic azimuth alignment technique known as gyrocompassing. In the use of the gyrocompassing technique to obtain azimuth alignment, accuracies are degraded considerably by two dominant error sources, the level axis controlling gyro drift rate and the imperfections of reference or independent velocity information. Consequently, an optimum performance controller is developed for driving the system in this mechanization and is based on a priori knowledge of the second-order statistics of the system error sources. The performance criteria will be to minimize the mean square azimuth error.Keywords
This publication has 4 references indexed in Scilit:
- FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMSPublished by Defense Technical Information Center (DTIC) ,1962
- Alignment of Inertial Guidance Systems by Gyrocompassing-Linear TheoryJournal of the Aerospace Sciences, 1961
- New Results in Linear Filtering and Prediction TheoryJournal of Basic Engineering, 1961
- Inertial navigationJournal of the Franklin Institute, 1958