Involvement of Endothelin (ET)A and ETB Receptors in the Hypertrophic Effects of ET-1 in Rabbit Ventricular Cardiomyocytes

Abstract
The question was addressed whether endothelin-1 (ET-1) exerts hypertrophic effects in cardiomyocytes isolated from ventricles of adult rabbits and maintained in short-term (24 h) serum-free primary culture providing mechanical quiescence. ET-1 (> or =100 pM) increased significantly total mass of cellular protein and incorporation of L-U-[(14)C]phenylalanine and 2-[(14)C]uridine into cellular protein and RNA, respectively. Cycloheximide (35 microM), an inhibitor of protein synthesis, significantly reduced the incorporation of L-U-[(14)C]phenylalanine and 2-[(14)C]uridine into cellular protein and RNA, respectively, under control conditions and in response to ET-1. Actinomycin D (5 microM), a selective inhibitor of transcription, abolished the incorporation of 2-[(14)C]uridine into cellular RNA and significantly reduced the incorporation of L-U-[(14)C]phenylalanine into cellular protein under control conditions and in response to ET-1. The selective antagonists at the ET(A) receptor [BQ123 (100 nM) and PD155080 (100 nM)] and the selective antagonist at the ET(B) receptor [BQ788 (100 nM)] significantly reduced the incorporation of L-U-[(14)C]phenylalanine into cellular protein in response to ET-1 (10 nM). The selective inhibitor of protein kinase C (PKC), bisindolylmaleimide (BIM) (5 microM), reduced markedly the incorporation of 2-[(14)C]uridine into cellular RNA and, to a lesser degree, the incorporation of L-U-[(14)C]phenylalanine into cellular protein in response to ET-1 (100 pM to 10 nM). ET-1 exerts hypertrophic effects directly in vitro in ventricular cardiomyocytes isolated from the hearts of adult rabbits. These effects are (a) due to de novo synthesis since total mass of cellular protein and incorporation of L-U-[(14)C]phenylalanine and 2-[(14)C]uridine into cellular protein and RNA, respectively, were increased; (b) mediated by both the ET(A) and ET(B) receptor subtypes; and (c) may be associated, at least partly, with the activation of PKC.