Abstract
Let ∑ be a projective space PG(3, q) of dimension 3 and finite order q. Then ∑ contains (q + 1)(q2 + 1) points and an equal number of planes, and (q2 + 1) (q2 + q + 1) lines. It will be convenient to consider lines and planes as sets of points and to treat the incidence relation as set inclusion. Each plane contains q2 + q + 1 points and an equal number of lines. Each line contains q + 1 points and is contained in an equal number of planes. Each point is contained in q2 + q + 1 planes and an equal number of lines.A spread of lines of ∑ is a set of q2 + 1 lines of ∑ which are pairwise disjoint, or skew; it can also be defined as a set of lines such that each point (or each plane) is incident with exactly one of the lines.

This publication has 2 references indexed in Scilit: