Varieties of Orthomodular Lattices. II
- 1 April 1972
- journal article
- Published by Canadian Mathematical Society in Canadian Journal of Mathematics
- Vol. 24 (2) , 328-337
- https://doi.org/10.4153/cjm-1972-027-4
Abstract
In this paper we continue the study of equationally defined classes of orthomodular lattices started in [1].The only atom in the lattice of varieties of orthomodular lattices is the variety of all Boolean algebras. Every nontrivial variety contains it. It follows from B. Jónsson [4, Corollary 3.2] that the variety [MO2] generated by the orthomodular lattice MO2 of Figure 1 covers the variety of all Boolean algebras. I t was first shown by R. J. Greechie (oral communication) and is not difficult to see that every variety not consisting of Boolean algebras only contains [MO2]. Again it follows from the result of Jónsson's mentioned above that the varieties generated by one of the orthomodular lattices of Figures 2 to 5 cover [MO2]. The Figures 4 and 5 are to be understood in such a way that the orthocomplement of every element is on the vertical line through this element.Keywords
This publication has 0 references indexed in Scilit: