The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA
- 16 March 1989
- journal article
- research article
- Published by Springer Nature in Nature
- Vol. 338 (6212) , 254-257
- https://doi.org/10.1038/338254a0
Abstract
HUMAN immunodeficiency virus type 1 (HIV-1) replication requires the expression of two classes of viral mRNA. The early class of HIV-1 transcripts is fully spliced and encodes viral regulatory gene products. The functional expression of one of these nuclear regulatory proteins, termed Rev (formerly Art or Trs), induces the cytoplasmic expression of the incompletely spliced, late class of HIV-1 mRNAs that encode the viral structural proteins, including Gag and Env1–6. Here, we provide evidence that this induction reflects the export from the cell nucleus to the cytoplasm of a pool of unspliced viral RNA constitutively expressed in the nucleus. The hypothesis that Rev acts on RNA transport, rather than splicing, is further supported by the observation that the cytoplasmic expression of a non-spliceable HIV-1 env gene sequence is also subject to Rev regulation. Here we show that this Rev response requires a specific target sequence which coincides with a complex RNA secondary structure present in the env gene. The response to Rev is fully maintained when this sequence is relocated to other exonic or intronic locations within env but is ablated by inversion. These results indicate that the HIV-1 rev gene product induces HIV-1 structural gene expression by activating the sequence-specific nuclear export of incompletely spliced HIV-1 RNA species.Keywords
This publication has 25 references indexed in Scilit:
- Virus-Specific Splicing Inhibitor in Extracts from Cells Infected with HIV-1Science, 1988
- HIV-1 tat trans-activation requires the loop sequence within tarNature, 1988
- Expression of the art/trs Protein of HIV and Study of Its Role in Viral Envelope SynthesisScience, 1987
- Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator proteinCell, 1987
- HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNACell, 1986
- Trans-activation of human immunodeficiency virus occurs via a bimodal mechanismCell, 1986
- Complete nucleotide sequence of the AIDS virus, HTLV-IIINature, 1985
- Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogeneNature, 1984
- THE PATHWAY OF EUKARYOTIC mRNA FORMATIONAnnual Review of Biochemistry, 1983
- Isolation of biologically active ribonucleic acid from sources enriched in ribonucleaseBiochemistry, 1979