Abstract
A fundamental feature of the synaptic organization of retina is the laminar-specific structure, in which specific types of retinal neurons form highly selective synapses to transfer distinct synaptic signals. In mature vertebrate retina, the dendrites of most retinal ganglion cells (RGCs) are narrowly stratified and ramified in specific strata of the inner plexiform layer (IPL) of retina to synapse with distinct subtypes of bipolar cells (BCs). However, little is known of how retinal neurons form this laminar-specific synaptic structure during development. Recent studies showed that the formation of retinal synaptic circuitry is regulated by both gene expression and neuronal activity. Here I will briefly discuss the recent advances in our understanding of how synaptic activity modulates the maturation of RGC synaptic connections.