Abstract
Our aim in this paper, generally stated, is to formulate an abstract concept of the notion of the sum of a numerical series. More particularly, it is a study of the type of sequence space called “sum space”. The idea of sum space arose in connection with two distinct problems.1.1 The Köthe-Toeplitz dual of a sequence space T consists of all sequences t such that stl1 (absolutely summable sequences) for each sT. It is known that if cs or bs is used in place of l1, an analogous theory of duality for sequence spaces can be developed (cf. [2]). What other spaces of sequences can play a rôle analogous to l1? This problem is treated in [6].1.2. Let {xn, fn} be a complete biorthogonal sequence in (X, X*), where X is a locally convex linear topological space and X* is its topological dual space.

This publication has 0 references indexed in Scilit: