Multiple Critical Points of Perturbed Symmetric Functionals
- 1 August 1982
- journal article
- Published by JSTOR in Transactions of the American Mathematical Society
- Vol. 272 (2) , 753-769
- https://doi.org/10.2307/1998726
Abstract
Variational problems which are invariant under a group of symmetries often possess multiple solutions. This paper studies the effect of perturbations which are not small and which destroy the symmetry for two classes of such problems and shows how multiple solutions persist despite the perturbation.Keywords
This publication has 11 references indexed in Scilit:
- On Elliptic Partial Differential EquationsPublished by Springer Nature ,2011
- Variational Methods for Nonlinear Eigenvalue ProblemsPublished by Springer Nature ,2009
- A Perturbation Method in Critical Point Theory and ApplicationsTransactions of the American Mathematical Society, 1981
- Topological results on a certain class of functionals and applicationJournal of Functional Analysis, 1981
- Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problemsmanuscripta mathematica, 1980
- Some critical point theorems and applicationsCommunications on Pure and Applied Mathematics, 1980
- Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systemsInventiones Mathematicae, 1978
- Periodic solutions of hamiltonian systemsCommunications on Pure and Applied Mathematics, 1978
- Dual variational methods in critical point theory and applicationsJournal of Functional Analysis, 1973
- Methods of Mathematical Physics, Vol. IPhysics Today, 1954