Epicardial and intramural excitation during ventricular pacing: effect of myocardial structure

Abstract
Published studies show that ventricular pacing in canine hearts produces three distinct patterns of epicardial excitation: elliptical isochrones near an epicardial pacing site, with asymmetric bulges; areas with high propagation velocity, up to 2 or 3 m/s and numerous breakthrough sites; and lower velocity areas (<1 m/s), where excitation moves across the epicardial projection of the septum. With increasing pacing depth, the magnitude of epicardial potential maxima becomes asymmetric. The electrophysiological mechanisms that generate the distinct patterns have not been fully elucidated. In this study, we investigated those mechanisms experimentally. Under pentobarbital anesthesia, epicardial and intramural excitation isochrone and potential maps have been recorded from 22 exposed or isolated dog hearts, by means of epicardial electrode arrays and transmural plunge electrodes. In five experiments, a ventricular cavity was perfused with diluted Lugol solution. The epicardial bulges result from electrotonic attraction from the helically shaped subepicardial portions of the wave front. The high-velocity patterns and the associated multiple breakthroughs are due to involvement of the Purkinje network. The low velocity at the septum crossing is due to the missing Purkinje involvement in that area. The asymmetric magnitude of the epicardial potential maxima and the shift of the breakthrough sites provoked by deep stimulation are a consequence of the epi-endocardial obliqueness of the intramural fibers. These results improve our understanding of intramural and epicardial propagation during premature ventricular contractions and paced beats. This can be useful for interpreting epicardial maps recorded at surgery or inversely computed from body surface ECGs.

This publication has 31 references indexed in Scilit: