Conversion of 5-aminolaevulinate into haem by homogenates of human liver. Comparison with rat and chick-embryo liver homogenates
- 1 May 1985
- journal article
- research article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 227 (3) , 893-901
- https://doi.org/10.1042/bj2270893
Abstract
To assess whether the synthesis of haem can be studied in small amounts of human liver, we measured kinetics of the conversion of 5-aminolaevulinate into haem and haem precursors in homogenates of human livers. We used methods previously developed in our laboratory for studies of rat and chick-embryo livers [Healey, Bonkowsky, Sinclair & Sinclair (1981) Biochem. J. 198, 595-604]. The maximal rate at which homogenates of human livers converted 5-aminolaevulinate into protoporphyrin was only 26% of that for rat, and 58% of that for chick embryo. In the absence of added Fe2+, homogenates of fresh human liver resembled those of chick embryos in that protoporphyrin and haem accumulated in similar amounts, whereas fresh rat liver homogenate accumulated about twice as much haem as protoporphyrin. However, when Fe2+ (0.25 mM) was added to human liver homogenates, mainly haem accumulated, indicating that the supply of reduced iron limited the activity of haem synthase, the final enzyme in the haem-biosynthesis pathway. Addition of the potent iron chelator desferrioxamine after 30 min of incubation with 5-amino[14C]laevulinate stopped further haem synthesis without affecting synthesis of protoporphyrin. Thus the prelabelled haem was stable after addition of desferrioxamine. Since the conversion of 5-amino[14C]laevulinate into haem and protoporphyrin was carried out at pH 7.4, whereas the pH optimum for rat or bovine hepatic 5-aminolaevulinate dehydratase is about 6.3, we determined kinetic parameters of the human hepatic dehydrase at both pH values. The Vmax was the same at both pH values, whereas the Km was slightly higher at the lower pH. Our results indicate that the synthesis of porphyrins and haem from 5-aminolaevulinate can be studied with the small amounts of human liver obtainable by percutaneous needle biopsy. We discuss the implications of our results in relation to use of rat or chick-embryo livers as experimental models for the biochemical features of human acute porphyria.This publication has 28 references indexed in Scilit:
- [Alcohol-induced changes of porphyrin metabolism (author's transl)].1978
- Is Porphobilinogen Deaminase Activity a Secondary Control Mechanism in Haem Biosynthesis in Humans?Biochemical Society Transactions, 1977
- The Non-Haematological Effects of Iron DeficiencyClinical Science, 1977
- Hepatic drug metabolism in iron-, magnesium- and potassium-deficient rats.1976
- Effects by heme, insulin, and serum albumin on heme and protein synthesis in chick embryo liver cells cultured in a chemically defined medium, and a spectrofluorometric assay for porphyrin composition.Journal of Biological Chemistry, 1975
- Heme synthetase deficiency in human protoporphyria. Demonstration of the defect in liver and cultured skin fibroblasts.Journal of Clinical Investigation, 1975
- The effects of iron deficiency on rat liver enzymes.1975
- The Effect of Drugs on 5-Aminolaevulinate Synthetase and Other Enzymes in the Pathway of Liver Haem BiosynthesisPublished by Springer Nature ,1975
- Experimental porphyria.1972
- Biosynthesis of α-Aminoketones and the Metabolism of AminoacetoneJournal of Biological Chemistry, 1963