Radiation damage by implanted ions in GaAs and GaP

Abstract
The production of lattice disorder in GaAs and GaP by Te ions up to 40 keV has been investigated. For GaAs the build up of damage with implanted ion dose is linear until a saturation level is reached. For Gap, two linear regions are evident; a slow build up of damage to ⋍15 per cent of the saturation level, followed by a faster rate of increase up to the final 100 per cent level. Radiation annealing, for GaP samples, both by the heavy ion beam during implantation and by the helium beam during back-scattering measurements has been observed. The annealing temperatures required for re-ordering the lattice depend on the percentage of damage present. Samples damaged up to the saturation level require annealing at ⋍500°C, whilst 300°C is sufficient for samples damaged to ≲50 per cent of the saturation value.