Non-Newtonian viscosity of atomic fluids in shear and shear-free flows

Abstract
Simple shear and various simple shear-free flows with constant traceless velocity gradient are simulated at the microscopic level for an atomic fluid at a single state point. The dependence of the viscosity upon the strain rate is obtained for each specific flow and analyzed on the basis of the retarded motion expansion of the nonequilibrium pressure tensor. Within the investigated range of strain rate, the pressure and the internal energy follow a linear behavior in terms of the second scalar invariant of the strain-rate tensor which, as expected by symmetry, is common to all flows.