Abstract
The consequences of selfing were examined for a population of self-compatible, protandrous, Sabatia angularis L. (Gentianaceae). Field-collected plants were hand-pollinated in the greenhouse to produce selfed progeny and outcrossed progeny from parents separated by a maximum of 5 m (near-outcross) and 85 m (far-outcross) in the field. Self, near-outcross, and far-outcross half sib progeny were grown in the greenhouse, a garden plot, and their native habitat. Progeny were compared by multiplicative fitness functions based on seed production per hand-pollination, seed germination, rosette formation, survival to reproduction, and reproduction in each environment. Variation in reproduction among progeny groups was influenced by the environment in which they were grown. Significant inbreeding depression was detected between the self and far-outcross progeny in each environment. Only the natural environment demonstrated a greater than 50% reduction in relative fitness of self compared to near-outcross progeny. This is of biological relevance since near-outcross hand-pollinations occurred within the range of pollen and seed dispersal suggesting that inbreeding depression in S. angularis is strong enough to maintain outcrossing in the study population. In the field, the far-outcross progeny outperformed the near-outcross progeny suggesting local population substructure. The magnitude of the inbreeding depression expressed among the self progeny was the greatest in the field, intermediate in the garden plot, and the least in the greenhouse.
Funding Information
  • Department of Biology at the University of Illinois at Chicago, a Sigma Xi Grant-in-Aid of Research, and a National Science Foundation Doctoral Dissertation Improvement (BSR-8501207)