Predictive Reward Signal of Dopamine Neurons
- 1 July 1998
- journal article
- research article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 80 (1) , 1-27
- https://doi.org/10.1152/jn.1998.80.1.1
Abstract
Schultz, Wolfram. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80: 1–27, 1998. The effects of lesions, receptor blocking, electrical self-stimulation, and drugs of abuse suggest that midbrain dopamine systems are involved in processing reward information and learning approach behavior. Most dopamine neurons show phasic activations after primary liquid and food rewards and conditioned, reward-predicting visual and auditory stimuli. They show biphasic, activation-depression responses after stimuli that resemble reward-predicting stimuli or are novel or particularly salient. However, only few phasic activations follow aversive stimuli. Thus dopamine neurons label environmental stimuli with appetitive value, predict and detect rewards and signal alerting and motivating events. By failing to discriminate between different rewards, dopamine neurons appear to emit an alerting message about the surprising presence or absence of rewards. All responses to rewards and reward-predicting stimuli depend on event predictability. Dopamine neurons are activated by rewarding events that are better than predicted, remain uninfluenced by events that are as good as predicted, and are depressed by events that are worse than predicted. By signaling rewards according to a prediction error, dopamine responses have the formal characteristics of a teaching signal postulated by reinforcement learning theories. Dopamine responses transfer during learning from primary rewards to reward-predicting stimuli. This may contribute to neuronal mechanisms underlying the retrograde action of rewards, one of the main puzzles in reinforcement learning. The impulse response releases a short pulse of dopamine onto many dendrites, thus broadcasting a rather global reinforcement signal to postsynaptic neurons. This signal may improve approach behavior by providing advance reward information before the behavior occurs, and may contribute to learning by modifying synaptic transmission. The dopamine reward signal is supplemented by activity in neurons in striatum, frontal cortex, and amygdala, which process specific reward information but do not emit a global reward prediction error signal. A cooperation between the different reward signals may assure the use of specific rewards for selectively reinforcing behaviors. Among the other projection systems, noradrenaline neurons predominantly serve attentional mechanisms and nucleus basalis neurons code rewards heterogeneously. Cerebellar climbing fibers signal errors in motor performance or errors in the prediction of aversive events to cerebellar Purkinje cells. Most deficits following dopamine-depleting lesions are not easily explained by a defective reward signal but may reflect the absence of a general enabling function of tonic levels of extracellular dopamine. Thus dopamine systems may have two functions, the phasic transmission of reward information and the tonic enabling of postsynaptic neurons.Keywords
This publication has 266 references indexed in Scilit:
- Associative learning in degenerative neostriatal disorders: Contrasts in explicit and implicit remembering between Parkinson's and huntington's diseasesMovement Disorders, 1995
- Responses of monkey midbrain dopamine neurons during delayed alternation performanceBrain Research, 1991
- Memory for temporal order and conditional associative-learning in patients with Parkinson's diseaseNeuropsychologia, 1990
- Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: A radioautographic studyJournal of Comparative Neurology, 1988
- New directions in neurotransmitter action: dopamine provides some important cluesTrends in Neurosciences, 1987
- Post-ingestive food-aversion learning to amino acid deficient diets by the terrestrial slugLimax maximusJournal of Comparative Physiology A, 1986
- Mesencephalic dopaminergic unit activity in the behaviorally conditioned ratLife Sciences, 1981
- Self-stimulation of the nucleus accumbens and ventral tegmental area of tsai attenuated by microinjections of spiroperidol into the nucleus accumbensBrain Research, 1979
- Prefrontal and cingulate unit activity during timing behavior in the monkeyBrain Research, 1979
- Ascending connections to the forebrain in the tegu lizardJournal of Comparative Neurology, 1978