Abstract
We discuss the notion of fermi liquid coherence in the different regimes of the Anderson lattice. For finite doping heavy fermion (HF) behaviour results when the kondo exchange energy JK is smaller than the oxygen oxygen overlap tpp. High temperature superconductors (HTS) are in the opposite regime (JK≫tpp). Doping the charge transfer insulator state introduces Zhang Rice singlet like states in the gap. These states, at zero temperature, continuously evolve into Kondo resonances as tpp is increased. The mechanism for destruction of coherence, at finite temperatures, is qualitatively different in the HF and the HTS regime. We study the temperature dependence of the transport coefficients when the charge transfer gap is large, in the temperature regime T≫Tcoh. We discuss our results in connection with the anomalous properties of the copper oxides.

This publication has 0 references indexed in Scilit: