ANESTHESIA WITH SODIUM PENTOBARBITAL ENHANCES LIPOPOLYSACCHARIDE-INDUCED CARDIOVASCULAR DYSFUNCTION IN RATS

Abstract
Lipopolysaccharide (LPS)-induced hypotension and impaired aortic contraction to norepinephrine (NE) are thought to be consequent to induction of nitric oxide synthase (iNOS). Anesthesia is often employed in studies of the mechanisms mediating LPS-induced cardiovascular dysfunction in rats. Since sympathetic nervous system activity and compensatory mechanisms can be altered by anesthesia, this study was designed to determine a) if the cardiovascular dysfunction associated with LPS (5 mg/kg, i.v.)-induced endotoxin shock is enhanced in anesthetized compared with conscious male Wistar rats, and b) the potential role of iNOS in these responses to LPS. Arterial pressure and heart rate were continuously measured via a femoral arterial cannula. Six hours after LPS, conscious rats had a stable mean arterial pressure (MAP) and were tachycardic, while anesthetized rats showed a significant decrease in MAP without tachycardia. Small mesenteric arterioles (200–300 μm) were isolated, and the endothelium was removed six h after LPS. Intraluminal diameter was continuously recorded while vessels were maintained at a constant intraluminal pressure of 40 mmHg. Norepinephrine-induced contraction and oscillations/min were impaired to a greater extent in arterioles from LPS-treated anesthetized rats than in those from conscious rats. Calcium-dependent and -independent nitric oxide formation, reflected as cGMP accumulation, were also determined in aortic rings treated with a chelator of Ca2+, EGTA, or the inhibitor of nitric oxide synthase activity, L-NAME. In rings from saline-treated conscious and anesthetized rats, cGMP accumulation was significantly reduced by EGTA and L-NAME, indicating calcium-dependent constitutive (cNOS) activity. However, in aortic rings from LPS-treated conscious and anesthetized rats, cGMP accumulation was not affected by EGTA and was significantly greater in rings from anesthetized vs. conscious rats. These results suggest that cardiovascular dysfunction is more prominent in LPS-treated anesthetized vs. conscious rats. This effect may be related to increased induction of iNOS in the presence of anesthesia.

This publication has 0 references indexed in Scilit: