Demonstration of Cross-Protective Vaccine Immunity against an Emerging Pathogenic Ebolavirus Species

Abstract
A major challenge in developing vaccines for emerging pathogens is their continued evolution and ability to escape human immunity. Therefore, an important goal of vaccine research is to advance vaccine candidates with sufficient breadth to respond to new outbreaks of previously undetected viruses. Ebolavirus (EBOV) vaccines have demonstrated protection against EBOV infection in nonhuman primates (NHP) and show promise in human clinical trials but immune protection occurs only with vaccines whose antigens are matched to the infectious challenge species. A 2007 hemorrhagic fever outbreak in Uganda demonstrated the existence of a new EBOV species, Bundibugyo (BEBOV), that differed from viruses covered by current vaccine candidates by up to 43% in genome sequence. To address the question of whether cross-protective immunity can be generated against this novel species, cynomolgus macaques were immunized with DNA/rAd5 vaccines expressing ZEBOV and SEBOV glycoprotein (GP) prior to lethal challenge with BEBOV. Vaccinated subjects developed robust, antigen-specific humoral and cellular immune responses against the GP from ZEBOV as well as cellular immunity against BEBOV GP, and immunized macaques were uniformly protected against lethal challenge with BEBOV. This report provides the first demonstration of vaccine-induced protective immunity against challenge with a heterologous EBOV species, and shows that Ebola vaccines capable of eliciting potent cellular immunity may provide the best strategy for eliciting cross-protection against newly emerging heterologous EBOV species. Ebola virus causes death, fear, and economic disruption during outbreaks. It is a concern worldwide as a natural pathogen and a bioterrorism agent, and has caused death to residents and tourists of Africa where the virus circulates. A vaccine strategy to protect against all circulating Ebola viruses is complicated by the fact that there are five different virus species, and individual vaccines provide protection only against those included in the vaccine. Making broad vaccines that contain multiple components is complicated, expensive, and poses challenges for regulatory approval. Therefore, in the present work, we examined whether a prime-boost immunization strategy with a vaccine targeted to one Ebola virus species could cross protect against a different species. We found that genetic immunization with vectors expressing the Ebola virus glycoprotein from Zaire blocked infection with a newly emerged virus species, Bundibugyo EBOV, not represented in the vaccine. Protection occurred in the absence of antibodies against the second species and was mediated instead by cellular immune responses. Therefore, single-component vaccines may be improved to protect against multiple Ebola viruses if they are designed to generate this type of immunity.