Arbitrary-amplitude rarefactive ion-acoustic double layers in warm multi-fluid plasmas

Abstract
Large- and small-amplitude rarefactive ion-acoustic double layers have recently been studied in a fluid plasma with double Maxwellian electrons and a single cold ion species. Here the stationary large-amplitude theory is generalized to include two warm ion species. A technique for numerically solving the full nonlinear problem is presented. With it, useful predictions of the effect of ion temperatures and of light-ion contamination on the double-layer structure are made. A generalization to an arbitrary number of similar fluid components is pointed out. The small-amplitude perturbation theory is also extended to such a plasma, and in its restricted regime good qualitative agreement is obtained with the results of the large-amplitude theory.