Social queuing in animal societies: a dynamic model of reproductive skew

Abstract
Previously developed models of reproductive skew have overlooked one of the main reasons why subordinates might remain in a group despite restricted opportunities to breed: the possibility of social queuing, i.e. acquiring dominant status in the future. Here, we present a dynamic ESS model of skew in animal societies that incorporates both immediate and future fitness consequences of the decisions taken by group members, based on their probability of surviving from one season to the next (when post–breeding survival probabilities drop to zero, our analysis reduces to the model produced by Reeve and Ratnieks in 1993, which considered only a single breeding season). This allows us to compare the delayed benefits of philopatry and the immediate opportunities for independent breeding. We show that delayed benefits greatly reduce the need for dominants to offer reproductive concessions to retain subordinates peacefully in the group. Moreover, this effect is strong enough that differences in survival have a much greater impact on the group structure than differences in other parameters, such as relatedness. When the possibility of acceding to dominant status is taken into account, groups where the dominant completely monopolizes reproduction can be stable, even if they consist of unrelated individuals, and even if subordinates have a reasonably high probability of winning a fight for dominance. Finally, we show that stable groups are possible even if association leads to a decrease in current productivity. Subordinates may still stand to gain from group membership under these circumstances, as acquiring breeding positions by queuing may be more efficient than the attempt to establish a new territory. At the same time, the dominant may be unable to exclude unwelcome subordinates, may enjoy increased survival when they are present, or may gain indirect benefits from allowing relatives to stay and queue for dominance. We conclude that reproductive skew in animal groups, ranging from eusocial insect colonies to mating aggregations (leks), will be strongly influenced by the future prospects of group members.