Intracellular transport of membrane glycoproteins: two closely related histocompatibility antigens differ in their rates of transit to the cell surface.
Open Access
- 1 September 1985
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 101 (3) , 725-734
- https://doi.org/10.1083/jcb.101.3.725
Abstract
The intracellular transport of two closely related membrane glycoproteins was studied in the murine B cell lymphoma line, AKTB-1b. Using pulse-chase radiolabeling, the kinetics of appearance of the class I histocompatibility antigens, H-2Kk and H-2Dk, at the cell surface were compared and found to be remarkably different. Newly synthesized H-2Kk is transported rapidly such that all radiolabeled molecules reach the surface within 1 h. In contrast, the H-2Dk antigen is transported slowly with a half-time of 4-5 h. The rates of surface appearance for the two antigens closely resemble the rates at which their Asn-linked oligosaccharides mature from endoglucosaminidase H (endo H)-sensitive to endo H-resistant forms, a process that occurs in the Golgi apparatus. This suggests that the rate-limiting step in the transport of H-2Dk to the cell surface occurs before the formation of endo H-resistant oligosaccharides in the Golgi apparatus. Subcellular fractionation experiments confirmed this conclusion by identifying the endoplasmic reticulum (ER) as the site where the H-2Dk antigen accumulates. The retention of this glycoprotein in the ER does not appear to be due to a lack of solubility or an inability of the H-2Dk heavy chain to associate with beta 2-microglobulin. Our data is inconsistent with a passive membrane flow mechanism for the intracellular transport of membrane glycoproteins. Rather, it suggests that one or more receptors localized to the ER membrane may mediate the selective transport of membrane glycoproteins out of the ER to the Golgi apparatus. The fact that H-2Kk and H-2Dk are highly homologous (greater than or equal to 80%) indicates that this process can be strongly influenced by limited alterations in protein structure.Keywords
This publication has 34 references indexed in Scilit:
- Mechanisms for the incorporation of proteins in membranes and organelles.The Journal of cell biology, 1982
- Processing of the carbohydrate units of thyroglobulin.Journal of Biological Chemistry, 1981
- The Golgi Apparatus: Two Organelles in TandemScience, 1981
- Differing requirements for glycosylation in the secretion of related glycoproteins is determined neither by the producing cell nor by the relative number of oligosaccharide units.Journal of Biological Chemistry, 1981
- Primary Structural Analysis of the Transplantation Antigens of the Murine H-2 Major Histocompatibility ComplexAnnual Review of Biochemistry, 1981
- Synthesis and Processing of Asparagine-Linked OligosaccharidesAnnual Review of Biochemistry, 1981
- Studies on externally disposed plasma membrane proteinsExperimental Cell Research, 1981
- Separation and characterization of two component tumor lines within the AKR lymphoma, AKTB-1, by fluorescence-activated cell sorting and flow microfluorometry analysis. I. the coexistence of sIg+ and sIg- sublines.The Journal of Immunology, 1981
- Characterization of the oligosaccharides of liver Z variant α1-antitrypsinCanadian Journal of Biochemistry, 1980
- Hybridoma cell lines secreting monoclonal antibodies to mouse H-2 and Ia antigens.The Journal of Immunology, 1980