Protein kinase CK2 is involved in G2 arrest and apoptosis following spindle damage in epithelial cells
- 25 October 2001
- journal article
- research article
- Published by Springer Nature in Oncogene
- Vol. 20 (48) , 6994-7005
- https://doi.org/10.1038/sj.onc.1204894
Abstract
P53 undergoes phosphorylation on several residues in response to cellular stresses that include UV and ionizing radiation, however the influence of spindle damage on this parameter is relatively unclear. Consequently, the effect of nocodazole on serine 392 phosphorylation was examined in two epithelial cell lines. We show that this process is dependent upon the stepwise activation of p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase casein kinase 2 (CK2). Furthermore, this activation correlated with the biochemical regulation of the maturation-promoting factor (MPF, cdc2/cyclin B), as both DRB and antisense depletion of CK2, as well as SB203580 were associated with an inhibition of its activation in response to nocodazole. Strikingly, when the cell cycle characteristics of nocodazole treated cells were examined, we observed that depletion or inhibition of the catalytic subunit of CK2, in the presence of microtubule inhibitors, resulted in a compromise of the G2 arrest (spindle checkpoint). Furthermore, CK2-depleted, nocodazole treated cells demonstrated a dramatic reduction in the apoptotic cell fraction, confirming that these cells had been endowed with oncogenic properties. These changes were observed in both HeLa cells and HCT116 cells. We also show that this effect is dependent on the presence of functional wild-type p53, as this phenomenon is not apparent in HCT116 p53−/− cells. Collectively, our results indicate two novel roles for CK2 in the spindle checkpoint arrest, in concert with p53. Firstly, to maintain increased cyclinB/cdc2 kinase activity, as a component of G2 arrest, and secondly, a role in p53-mediated apoptosis. These findings may have implications for an improved understanding of abnormalities of the spindle checkpoint in human cancers, which is a prerequisite for defining future therapies.Keywords
This publication has 55 references indexed in Scilit:
- Stress-induced Activation of Protein Kinase CK2 by Direct Interaction with p38 Mitogen-activated Protein KinasePublished by Elsevier ,2000
- Induction of the p53-target gene GADD45 in HPV-positive cancer cellsOncogene, 1999
- Prevention of mammalian DNA reduplication, following the release from the mitotic spindle checkpoint, requires p53 protein, but not p53-mediated transcriptional activityOncogene, 1998
- DNA damage activates p53 through a phosphorylation–acetylation cascadeGenes & Development, 1998
- p53 deficiency and misexpression of protein kinase CK2α collaborate in the development of thymic lymphomas in miceOncogene, 1998
- Protein interactions at the carboxyl terminus of p53 result in the induction of its in vitro transactivation potentialOncogene, 1997
- Regulation of p53 stability by Mdm2Nature, 1997
- Mdm2 promotes the rapid degradation of p53Nature, 1997
- Depletion of catalytic and regulatory subunits of protein kinase CK2 by antisense oligonucleotide treatment of neuroblastoma cellsCellular and Molecular Neurobiology, 1994
- The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53Cell, 1993