Efficient numerical methods for infiltration using Richards' equation
- 1 February 1990
- journal article
- Published by American Geophysical Union (AGU) in Water Resources Research
- Vol. 26 (2) , 279-290
- https://doi.org/10.1029/wr026i002p00279
Abstract
Two efficient finite difference methods for solving Richards' equation in one dimension are presented, and their use in a range of soils and conditions is investigated. Large time steps are possible when the mass‐conserving mixed form of Richards' equation is combined with an implicit iterative scheme, while a hyperbolic sine transform for the matric potential allows large spatial increments even in dry, inhomogeneous soil. Infiltration in a range of soils can be simulated in a few seconds on a personal computer with errors of only a few percent in the amount and distribution of soil water. One of the methods adds points to the space grid as an infiltration or redistribution front advances, thus gaining considerably in efficiency over the other fixed grid method for infiltration problems. In 17‐s computing, this advancing front method simulated infiltration, redistribution, and drainage for 50 days in an inhomogeneous soil with nonuniform initial conditions. Only 16 space and 21 time steps were needed for the simulation, which included early ponding with the development and dissipation of a perched water table.Keywords
This publication has 15 references indexed in Scilit:
- Application of a simple soil-water hysteresis modelJournal of Hydrology, 1988
- Determining Soil Hydraulic Properties from One‐step Outflow Experiments by Parameter Estimation: I. Theory and Numerical StudiesSoil Science Society of America Journal, 1985
- A finite element collocation method for variably saturated flows in porous mediaNumerical Methods for Partial Differential Equations, 1985
- Modelling infiltration: A measurable parameter approachJournal of Agricultural Engineering Research, 1981
- Measurement and Numerical Simulation of Hysteretic Flow in a Heterogeneous Porous MediumSoil Science Society of America Journal, 1979
- A Comparison of Numerical Simulation Models For One‐Dimensional InfiltrationSoil Science Society of America Journal, 1977
- Finite Element Analysis of Two-Dimensional Flow in Soils Considering Water Uptake by Roots: I. TheorySoil Science Society of America Journal, 1975
- INFILTRATION INTO HOMOGENEOUS AND LAYERED COLUMNS OF AGGREGATED LOAM, SILT LOAM, AND CLAY SOILCanadian Journal of Soil Science, 1966
- n-DiffusionAustralian Journal of Physics, 1961
- THE THEORY OF INFILTRATIONSoil Science, 1957