Characterization of Catechol Glucuronidation in Rat Liver
- 1 February 2002
- journal article
- Published by Elsevier in Drug Metabolism and Disposition
- Vol. 30 (2) , 199-207
- https://doi.org/10.1124/dmd.30.2.199
Abstract
Catechols are a class of substances from natural or synthetic origin that contain a 1,2-dihydroxybenzene group. We have characterized the glucuronidation by rat liver microsomes and by the rat liver recombinant UDP-glucuronosyltransferase isoforms UGT1A6 and UGT2B1 of a series of 42 structurally diverse catechols, including neurotransmitters, polyphenols, drugs, and catechol estrogens. Small catechols (4-nitrocatechol, 2,3-dihydroxybenzaldehyde, 4-methylcatechol, and tetrachlorocatechol), tyrphostine A23, and octylgallate were glucuronidated at the highest rate by rat liver microsomes and the recombinant enzymes. By contrast, polyphenols from green tea (catechin and related compounds), 3,5-dinitrocatechol, the catechol-O-methyltransferase inhibitor drugs (entacapone, nitecapone, and tolcapone), the carboxyl catechols (gallic acid and dihydroxybenzoic acid derivatives), and the neurotransmitters and dopaminergic drugs, except dobutamine, were glucuronidated at low rate. Glucuronidation of most catechols was increased upon treatment of rats by 3-methylcholanthrene (3-MC) or Aroclor 1254. No induction was observed after administration of phenobarbital and clofibrate or treatment with catechols. Partial least-squares modeling was carried out to explain the variations of glucuronidation activity by liver microsomes of nontreated and 3-MC-treated rats. The model developed explained 82% and predicted 61% of the variations of glucuronidation activities. Among the 17 electronic and substructure parameters used that characterize the catechols, the hydrophobicity/molar volume ratio of catechols showed a strong positive correlation with the glucuronidation rate. The effect of the pKaof the catechol group was modeled to be nonlinear, the optimal pKa value for glucuronidation being between 8 and 9. Hydrogen bonding and steric effects also were important to account for to predict the glucuronidation rates.Keywords
This publication has 28 references indexed in Scilit:
- Molecular mechanisms of anticancer activity of natural dietetic products.Journal of Molecular Medicine, 2000
- Modulation of arachidonic acid metabolism by phenols: relation to their structure and antioxidant/prooxidant propertiesFree Radical Biology & Medicine, 1998
- Ah receptor-controlled transcriptional regulation and function of rat and human UDP-glucuronosyltransferase isoformsAdvances in Enzyme Regulation, 1998
- A Universal Radiochemical High-Performance Liquid Chromatographic Assay for the Determination of UDP-Glucuronosyltransferase ActivityAnalytical Biochemistry, 1998
- Isolation and Biochemical Characterization of the PilA Protein ofNeisseria meningitidisArchives of Biochemistry and Biophysics, 1997
- Identification of a Rat Oltipraz-inducible UDP-glucuronosyltransferase (UGT1A7) with Activity Towards Benzo(a)pyrene-7,8-dihydrodiolJournal of Biological Chemistry, 1997
- Specificity of human UDP-Glucuronosyltransferases and xenobiotic glucuronidationLife Sciences, 1995
- Drug-Responsive and Tissue-Specific Alternative Expression of Multiple First Exons in Rat UDP-Glucuronosyltransferase Family 1 (UGT1) Gene ComplexThe Journal of Biochemistry, 1995
- A unified method for the assay of uridine diphosphoglucuronyl-transferase activities toward various aglycones using uridine diphospho[U-14C]glucuronic acidAnalytical Biochemistry, 1980
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976