Controlled manipulation of molecular samples with the nanoManipulator

Abstract
The nanoManipulator system adds a virtual-reality interface to an atomic-force microscope (AFM), thus providing a tool that can be used by scientists to image and manipulate nanometer-sized molecular structures in a controlled manner. As the AFM tip scans the sample, the tip-sample interaction forces are monitored, which, in turn, can yield information about the frictional, mechanical, material, and topological properties of the sample. Computer graphics are used to reconstruct the surface for the user, with color or contours overlaid to indicate additional data sets. Moreover, a force feedback stylus, which is connected to the tip via software, allows the user to directly interact with the macromolecules. This system is being used to investigate carbon nanotubes, DNA, fibrin, adeno- and tobacco mosaic virus. It is now also possible to insert this system into a scanning electron microscope which provides the user with continuous images of the sample, even while the AFM tip is being used for manipulations.