On the topology of the catalase biosynthesis and-degradation in the guinea pig liver

Abstract
The biosynthesis, transport and degradation of catalase have been studied in the guinea pig liver parenchymal cell using 2-allyl-2-isopropylacetamide (AIA) as an inhibitor of de novo formation of catalase. Total catalase activity was assayed biochemically; cytoplasmic catalase was measured microspectrophotometrically after quantitative diaminobenzidine staining of the liver. By morphometry, number and size of peroxisomes in catalase stained sections were determined. From our data we conclude that (1) the final step in the catalase formation takes place inside peroxisomes, (2) catalase is transported from the peroxisomes into the cytoplasm, (3) in the cytoplasm catalase is degraded. These conclusions in part confirm the topological model on the intracellular catalase biosynthesis pathway of Lazarow and de Duve (1973) except for the presence of cytoplasmic catalase which is released from the peroxisomes as proposed earlier by Jones and Masters (1975).

This publication has 31 references indexed in Scilit: