Characterization of sub‐Gaussian heat kernel estimates on strongly recurrent graphs
- 20 June 2005
- journal article
- research article
- Published by Wiley in Communications on Pure and Applied Mathematics
- Vol. 58 (12) , 1642-1677
- https://doi.org/10.1002/cpa.20091
Abstract
No abstract availableKeywords
This publication has 41 references indexed in Scilit:
- Which values of the volume growth and escape time exponent are possible for a graph?Revista Matemática Iberoamericana, 2004
- Volume and time doubling of graphs and random walks: The strongly recurrent caseCommunications on Pure and Applied Mathematics, 2001
- On the relation between elliptic and parabolic Harnack inequalitiesAnnales de l'institut Fourier, 2001
- Gaussian lower bounds for random walks from elliptic regularityAnnales de l'Institut Henri Poincaré, Probabilités et Statistiques, 1999
- Brownian Motion and Harmonic Analysis on Sierpinski CarpetsCanadian Journal of Mathematics, 1999
- Parabolic Harnack inequality and estimates of Markov chains on graphsRevista Matemática Iberoamericana, 1999
- Minorations pour les chaînes de Markov unidimensionnellesProbability Theory and Related Fields, 1993
- Transition densities for Brownian motion on the Sierpinski carpetProbability Theory and Related Fields, 1992
- Dirichlet forms on fractals: Poincaré constant and resistanceProbability Theory and Related Fields, 1992
- On the resistance of the Sierpiński carpetProceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1990