On the Occurrence of Three-Center Hydrogen Bonds in Cyclodextrins in Crystalline Form and in Aqueous Solution: Comparison of Neutron Diffraction and Molecular Dynamics Results

Abstract
Three-center (bifurcated) hydrogen bonds may play a role by serving as an intermediate state between different dynamically changing hydrogen bonding patterns. Hydrogen bonding configurations can be studied experimentally by neutron diffraction and theoretically by computer simulation techniques. Here, both methods are used to analyse the occurrence of three-center hydrogen bonds in crystals of cyclodextrins. Almost all experimentally observed three-center hydrogen bonds in the crystal are reproduced in the molecular dynamics (MD) simulations, even as far as the detailed asymmetric geometry is concerned. On the basis of this result a MD simulation of cyclodextrin in aqueous solution is searched for the occurrence of three-center hydrogen bonds. Significant differences are found. In solution more different three-center hydrogen bonds per α-cyclodextrin molecule are observed than in the crystal but the population (existence as percent of the simulation period) of each three-center hydrogen bond is lower in solution than in crystal. These may indeed serve as intermediate states in the process of changing one hydrogen bonding pattern into another.

This publication has 15 references indexed in Scilit: