Distortion tolerant pattern recognition based on self-organizing feature extraction
- 1 May 1995
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Neural Networks
- Vol. 6 (3) , 539-547
- https://doi.org/10.1109/72.377961
Abstract
A generic, modular, neural network-based feature extraction and pattern classification system is proposed for finding essentially two-dimensional objects or object parts from digital images in a distortion tolerant manner, The distortion tolerance is built up gradually by successive blocks in a pipeline architecture. The system consists of only feedforward neural networks, allowing efficient parallel implementation. The most time and data-consuming stage, learning the relevant features, is wholly unsupervised and can be made off-line. The consequent supervised stage where the object classes are learned is simple and fast. The feature extraction is based on distortion tolerant Gabor transformations, followed by minimum distortion clustering by multilayer self-organizing maps. Due to the unsupervised learning strategy, there is no need for preclassified training samples or other explicit selection for training patterns during the training, which allows a large amount of training material to be used at the early stages, A supervised, one-layer subspace network classifier on top of the feature extractor is used for object labeling. The system has been trained with natural images giving the relevant features, and human faces and their parts have been used as the object classes for testing. The current experiments indicate that the feature space has sufficient resolution power for a moderate number of classes with rather strong distortions.Keywords
This publication has 18 references indexed in Scilit:
- Clustering properties of hierarchical self-organizing mapsJournal of Mathematical Imaging and Vision, 1992
- Self-organizing maps: ordering, convergence properties and energy functionsBiological Cybernetics, 1992
- Size and distortion invariant object recognition by hierarchical graph matchingPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1990
- 30 years of adaptive neural networks: perceptron, Madaline, and backpropagationProceedings of the IEEE, 1990
- Backpropagation Applied to Handwritten Zip Code RecognitionNeural Computation, 1989
- Pattern classification using neural networksIEEE Communications Magazine, 1989
- Multilayer feedforward networks are universal approximatorsNeural Networks, 1989
- Complete discrete 2-D Gabor transforms by neural networks for image analysis and compressionIEEE Transactions on Acoustics, Speech, and Signal Processing, 1988
- Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filtersJournal of the Optical Society of America A, 1985
- Self-organized formation of topologically correct feature mapsBiological Cybernetics, 1982