The Effect of Rotation and Surface Friction on Orographic Drag

Abstract
A numerical, hydrostatic model is used to investigate the form and magnitude of the pressure drag created by 3D elliptical mountains of various heights (h) and aspect ratios (R) in flows characterized by uniform upstream velocity (U) and stability (N). Three series of simulations, corresponding to increasing degrees of realism, are performed: (i) without rotation and surface friction; (ii) with rotation, but no surface friction; (iii) with rotation and surface friction. For the simulations with rotation, the Coriolis parameter has a typical midlatitude value and the upstream flow is geostrophically balanced. The surface friction is introduced by the use of a typical roughness length. For low values of the nondimensional height (Nh/U), the pressure drag is reduced by the effect of rotation, in agreement with well-known results of linear theory. This seems to be valid until Nh/U ∼ 1.4, that is, in the high drag regime. On the other hand, for large values of Nh/U, that is, in the blocked flow regime... Abstract A numerical, hydrostatic model is used to investigate the form and magnitude of the pressure drag created by 3D elliptical mountains of various heights (h) and aspect ratios (R) in flows characterized by uniform upstream velocity (U) and stability (N). Three series of simulations, corresponding to increasing degrees of realism, are performed: (i) without rotation and surface friction; (ii) with rotation, but no surface friction; (iii) with rotation and surface friction. For the simulations with rotation, the Coriolis parameter has a typical midlatitude value and the upstream flow is geostrophically balanced. The surface friction is introduced by the use of a typical roughness length. For low values of the nondimensional height (Nh/U), the pressure drag is reduced by the effect of rotation, in agreement with well-known results of linear theory. This seems to be valid until Nh/U ∼ 1.4, that is, in the high drag regime. On the other hand, for large values of Nh/U, that is, in the blocked flow regime...

This publication has 0 references indexed in Scilit: