Sulfonylurea and K+-Channel Opener Sensitivity of KATP Channels
Open Access
- 1 August 1999
- journal article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 114 (2) , 203-213
- https://doi.org/10.1085/jgp.114.2.203
Abstract
The sensitivity of KATP channels to high-affinity block by sulfonylureas and to stimulation by K+ channel openers and MgADP (PCOs) is conferred by the regulatory sulfonylurea receptor (SUR) subunit, whereas ATP inhibits the channel through interaction with the inward rectifier (Kir6.2) subunit. Phosphatidylinositol 4,5-bisphosphate (PIP2) profoundly antagonized ATP inhibition of KATP channels expressed from cloned Kir6.2+SUR1 subunits, but also abolished high affinity tolbutamide sensitivity. By stabilizing the open state of the channel, PIP2 drives the channel away from closed state(s) that are preferentially affected by high affinity tolbutamide binding, thereby producing an apparent loss of high affinity tolbutamide inhibition. Mutant KATP channels (Kir6.2[ΔN30] or Kir6.2[L164A], coexpressed with SUR1) also displayed an “uncoupled” phenotype with no high affinity tolbutamide block and with intrinsically higher open state stability. Conversely, Kir6.2[R176A]+SUR1 channels, which have an intrinsically lower open state stability, displayed a greater high affinity fraction of tolbutamide block. In addition to antagonizing high-affinity block by tolbutamide, PIP2 also altered the stimulatory action of the PCOs, diazoxide and MgADP. With time after PIP2 application, PCO stimulation first increased, and then subsequently decreased, probably reflecting a common pathway for activation of the channel by stimulatory PCOs and PIP2. The net effect of increasing open state stability, either by PIP2 or mutagenesis, is an apparent “uncoupling” of the Kir6.2 subunit from the regulatory input of SUR1, an action that can be partially reversed by screening negative charges on the membrane with poly-l-lysine.Keywords
This publication has 41 references indexed in Scilit:
- ATP inhibition of KATP channels: control of nucleotide sensitivity by the N‐terminal domain of the Kir6.2 subunitThe Journal of Physiology, 1999
- PIP 2 and PIP as Determinants for ATP Inhibition of K ATP ChannelsScience, 1998
- The sulphonylurea receptor SUR1 regulates ATP‐sensitive mouse Kir6.2 K+ channels linked to the green fluorescent protein in human embryonic kidney cells (HEK 293)The Journal of Physiology, 1998
- Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptorNature, 1997
- Anionic Phospholipids Activate ATP-sensitive Potassium ChannelsPublished by Elsevier ,1997
- Adenosine Diphosphate as an Intracellular Regulator of Insulin SecretionScience, 1996
- A Family of Sulfonylurea Receptors Determines the Pharmacological Properties of ATP-Sensitive K+ ChannelsPublished by Elsevier ,1996
- Reconstitution of I KATP : An Inward Rectifier Subunit Plus the Sulfonylurea ReceptorScience, 1995
- Surface charge and properties of cardiac ATP-sensitive K+ channels.The Journal of general physiology, 1994
- ATP‐sensitive K channels in heart muscle Spare channelsFEBS Letters, 1991