Beam steering with pulsed two-dimensional transducer arrays

Abstract
The major problem facing the development of 2-D arrays for imaging is the complexity arising from the large number of elements anticipated in such transducers. The authors have undertaken a theoretical investigation of the focusing and steering properties of pulsed 2-D arrays to characterize the parameters required for medical imaging, such as element size, spacing, and number of elements. Details of the computational methods employed are presented, as well as a discussion of the steered beam properties of wideband 2-D arrays. The effects of apodization and element cross-coupling on the beam properties of a 2-D transducer array are examined. The beam properties of various sparse arrays with elements randomly distributed over the aperture of the transducer are discussed.<>