Abstract
A nonparametric minimum Hellinger distance estimator of location is introduced and shown to be asymptotically efficient at every symmetric density with finite Fisher information. Under small, possibly asymmetric, perturbations in such a density, the estimator is asymptotically robust in a technical sense which extends Hajek's concept of "regularity." A numerical example illustrates the computational feasibility of the estimator and its resistance to an arbitrary single outlier.

This publication has 0 references indexed in Scilit: