Accounting for Elastic Energy Storage in McKibben Artificial Muscle Actuators

Abstract
The McKibben artificial muscle is a pneumatic actuator whose properties include a very high force to weight ratio. This characteristic makes it very attractive for a wide range of applications such as mobile robots and prosthetic appliances for the disabled. In this paper, we present a model that includes a nonlinear, Mooney–Rivlin mathematical description of the actuator’s internal bladder. Experimental results show that the model provides improvement in the ability to predict the actuator’s output force. However, a discrepancy between model and experiment, albeit smaller than previous models, still exists. A number of factors are identified that may be responsible for this discrepancy. [S0022-0434(00)00902-3]

This publication has 6 references indexed in Scilit: